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Abstract 

Further studies of an efficient graphical algorithmic method for determining algebraic 
structure count of polycyclic polyene systems possessing 4n rings are presented. 

Numerous methods for determining the number of Kekul6 structures (isomorphic 
with 1-factor subgraphs) of benzenoid hydrocarbons have been published [1-4].  
For alternant (no odd-sized rings) molecular systems having exclusively 4n + 2 
(n = 1, 2 . . . .  ) rings, the algebraic structure count (ACS) [5] or corrected structure 
count (CSC) [4] is identical to the number of Kekul6 (K) structures. Limited work 
on alternant molecular systems possessing 4n rings or nonalternant molecular systems 
has been pursued [4-7].  Herein, we present a clarification of the generalization of 
the method of Randi6 [2] which permits one to decompose larger molecular systems 
into smaller ones of known CSC for the purpose of determining the CSC of the 
larger system. 

Our previous note [8] on the rapid graphical determination of the algebraic 
structure count (ASC) of altemant molecular graphs is expanded and our selection 
rules are made more explicit. Recently, we uncovered [9] an exception to our 
generalization of the Randi6 recursion [2], which is discussed together with numerous 
other examples. 

It was previously demonstrated that the proposed formula 

ASC(G) = I A S C ( G -  e) + A S C ( G -  (e))l (1) 

led to the rapid determination of ASC for two very diverse systems when the 
negative sign was chosen only when edge e belonged solely to a 4n ring of 
graph G; G - e denotes the subgraph obtained by deleting an arbitrary edge e, and 
G - ( e )  denotes the subgraph obtained from G by the deletion of two vertices 
incident to e in G. Use of the negative sign in (1) for edges on 4n rings agrees with 
our intuition, since these rings are antiaromatic and must make negative contributions 
to the overall stability of the polyene molecular system containing them. 
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Proof of (1) for two special cases 

It can be easily demonstrated that if an alternant system has a single 4n ring 
among otherwise hexagonal rings, then operating on this 4n ring (a selection rule) 
is more convenient since K = ASC for benzenoids are better known and are easily 
deducible by the Randi6 equation of K(G) = K(G - e) + K(G - (e)). It can be easily 
proved that eq. (1) with the negative sign is always true for alternant systems with 
a single 4n ring if this ring is decomposed to give hexagonal fragments. Consider 
the following equation, derived in Gutman's paper [7]: 

[ L ( G )  - L ( G  - ( e ) )  - L ( G  - e ) ]  • [ L ( G )  - L ( G  - ( e ) )  + L ( G  - e ) ]  

• [ L ( G )  + L ( G  - ( e ) )  - L ( G  - e ) ]  • [ L ( G )  + L ( G  - ( e ) )  + L ( G  - e ) ]  = 0 ,  ( 2 )  

where L(G) = ASC(G). Since the last factor of (2) is nonzero, then one of the three 
remaining factors must equate to zero. If one operates on an edge of the sole 4n 
ring in G among otherwise hexagonal rings and obtains fragments possessing only 
hexagonal-containing components, then the first factor of (2) cannot equate to zero 
since in this case A S C ( G -  e )=  K ( G -  e) and A S C ( G -  (e))= K ( G -  (e)) would 
imply that ASC(G) = K(G), which is a contradiction. Thus, either the second or 
third factor must equate to zero, which proves the applicability of (1) with the 
negative sign when it is applied to an edge of the sole 4n ring in alternant systems 
having otherwise hexagonal rings. Figures 1 and 2 give several diverse examples 
of molecular graphs having a single 4n ring. The author has used (1) as a cross- 
check for his computations on several families of alternant hydrocarbons possessing 
a single 4n ring among otherwise hexagonal ones [10]. When two 4n rings are 
joined, their common bond should be selected for application of (1) with the negative 
sign. It can be proved that (1) with the negative sign is always true for alternant 
systems with two joined 4n rings if these tings are simultaneously decomposed to 
give hexagonal fragments. The proof is exactly the same as the one given above 
for alternant systems with a single 4n ring. Figure 1 gives several examples of such 
alternant systems. 

Algorithm for the application of (1) 

Figure 1 presents all the alternant molecular graphs and their ASC values 
previously studied by Herndon and Wilcox [4,5, 1 1]. Application of (1) to all the 
edges of all these structures except the three marked with asterisks gives the correct 
ASC values• The ASC values for the structures in fig. 2 were originally obtained 
by computation of their characteristic polynomials using l anl= ASC(G) 2 for the tail 
coefficient. 

Figure 3 details the application of (1) to all the edges of a molecular graph 
which is isomeric to anthracene/phenanthrene. Operating on edges a, b, and c of the 
tetragonal tings leads to exceptions of (1). Similarly, operating on the edges of the 
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Fig. 1. (continues) 
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Fig. 1. (continues) 
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ASC=3 ASC=0* ASC=0* 

Fig. 1. Herndon and Wilcox's ASC results. 

I, C16H10 K2,6CIBHI2 
K=6 = 
ASC=2 ASC~4 3, C20HI2 

E =21.7765 E =24.7886 
W W 

HOMO=0.2090 HOMO=0.2657 

4, O~2Hx2 
K=I3 
ASC=5 
E =3O.5435 

HOMO=0.2717 

K=9 
ASC=I 
E =27.0368 

HOMO=0. II01 

5, C22H 1~ 
K=II 
ASC=7 
E -3o.4424 

HOMO=O.3142 

Fig. 2. (continues) 
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E =33.5/t39 II 
HOMO=0.4450 

8, C2~llze K=I9 
K=ASC=9 ASC=7 
E =32.7223 E =36.2300 

HOMO=0.4568 HOMO=0.2280 

10, C26111 ~ 
K=21 
ASC=3 
E =35.8258 II, C2eHIs Eg~39.6916 

K=26 
HOMO=O.1586 A2C=24 HOMO=O.~689 

K~30 ~ K=45 
ASC-4 ASC=27 
E -4z.5o81 E -~5.594z 

HOM0-O.1367 HOMO-0.2607 

Fig. 2. Known altemant hydrocarbons with 4n rings. 
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d d 

f 

Edge K(G - e) K(G - (e)) K(G) CSC(G - e) CSC(G - (e)) CSC(G) 

a 3 1 4 1 1 0 

b 1 3 4 1 1 0 

c 3 1 4 1 1 0 

d 2 2 4 0 2 2 

e 2 2 4 2 0 2 

f 2 2 4 0 2 2 

g 2 2 4 2 0 2 

h 3 1 4 1 1 2 

i 1 3 4 1 1 2 

j 3 1 4 1 1 2 

k 1 3 4 1 1 2 

l 3 1 4 ~ 1 1 2 

m 2 2 4 2 0 2 

n 2 2 4 0 2 2 

o 3 1 4 3 1 2 

p 3 1 4 1 1 2 

Fig. 3. Application of  ASC(G) = I ASC(G - e) + ASC(G - (e)) I 
to all edges o f  an isomer o f  anthracene/phenanthrene. 

analogous tetragonal ring of structures 4, 5, 9, 10, and 12 in fig. 2 containing this 
same substructure also led to exceptions, whereas operating on all other edges of 
these structures gives the correct values. These results lead to our second 
selection rule: Apply (1) preferentially to the edges of octagonal rings before 
operating on tetragonal or hexagonal rings. Since all the structures in fig. 2 have 
been synthesized [12], their HMO parameters are also listed. 

In summary, our general procedure is to recursively apply (1) to alternant 
molecular graphs operating first on edges belonging to octagonal rings and then 
tetragonal rings until only hexagonal components are obtained. At each step, essential 
single and double bonds are trimmed from the fragment graphs and the negative 
sign is chosen only for 4n rings. In this way, all the ASC values for the molecular 
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graphs in figs. 1 - 3  were rapidly and reliably obtained. Although we know of  no 
exception to the applicability of  the current algorithm, no general proof of  its 
validity is given. As a final note, we have recently discovered a publication which 
presents an approach to ASC that has features very similar to the one espoused 
herein [13]. 

The concept of algebraic structure count has not yet been demonstrated to be 
a completely useful concept compared to Kekul6 structure count. If one examines 
the ASC values for Wilcox's hydrocarbons (the last four structures in fig. 1) arranged 
in homologous order, the ASC values first decrease and then increase. If one 
assumes that the first two values of  2 and 1 have negative signs, then the amended 
ASC values would correlate with the observed chemical stabilities of  these compounds. 
Thus, this author believes that our inability to associate a negative sign to ASC 
values is probably a shortcoming for some series of  compounds. 
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